Previsão por Técnicas de Suavização Este site é uma parte dos objetos de aprendizado de E-Labs JavaScript para a tomada de decisões. Outro JavaScript nesta série é categorizado em diferentes áreas de aplicações na seção MENU nesta página. Uma série temporal é uma sequência de observações que são ordenadas a tempo. Inerente à coleta de dados obtidos ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. As técnicas amplamente utilizadas são o alisamento. Essas técnicas, quando aplicadas corretamente, revelam mais claramente as tendências subjacentes. Digite as séries temporais em ordem de linha em sequência, a partir do canto superior esquerdo e o (s) parâmetro (s), e clique no botão Calcular para obter uma previsão em um período de antecedência. As caixas em branco não estão incluídas nos cálculos, mas os zeros são. Ao inserir seus dados para mover de célula para célula na matriz de dados, use a tecla Tab, sem seta ou digite as chaves. Características das séries temporais, que podem ser reveladas examinando seu gráfico. Com os valores previstos e o comportamento dos resíduos, modelagem de previsão de condições. Médias móveis: as médias médias classificam-se entre as técnicas mais populares para o pré-processamento de séries temporais. Eles são usados para filtrar o ruído branco aleatório dos dados, para tornar as séries temporais mais suaves ou mesmo para enfatizar certos componentes informativos contidos nas séries temporais. Suavização exponencial: Este é um esquema muito popular para produzir uma série de tempo suavizada. Considerando que, nas Médias móveis, as observações passadas são ponderadas de forma igual, Suavização exponencial atribui pesos exponencialmente decrescentes à medida que a observação envelhece. Em outras palavras, as observações recentes recebem relativamente mais peso na previsão do que as observações mais antigas. O Suavizado Exponencial Duplo é melhor nas tendências de manuseio. O Triple Exponential Suavização é melhor no manuseio de tendências da parábola. Uma média móvel ponderada exponencialmente com uma constante de suavização a. Corresponde aproximadamente a uma média móvel simples de comprimento (isto é, período) n, onde a e n estão relacionados por: a 2 (n1) OR n (2 - a) a. Assim, por exemplo, uma média móvel ponderada exponencialmente com uma constante de suavização igual a 0,1 corresponderia aproximadamente a uma média móvel de 19 dias. E uma média móvel simples de 40 dias corresponderia aproximadamente a uma média móvel ponderada exponencialmente com uma constante de suavização igual a 0,04878. Holst Linear Exponential Suavização: Suponha que as séries temporais não sejam sazonais, mas que mostram a tendência de exibição. O método Holts estima tanto o nível atual como a atual tendência. Observe que a média móvel simples é um caso especial do alisamento exponencial, definindo o período da média móvel para a parte inteira de (2-Alpha) Alpha. Para a maioria dos dados de negócios, um parâmetro Alpha menor que 0.40 geralmente é efetivo. No entanto, pode-se realizar uma pesquisa em grade do espaço dos parâmetros, com 0,1 a 0,9, com incrementos de 0,1. Então, o melhor alfa tem o menor erro absoluto médio (erro MA). Como comparar vários métodos de suavização: embora existam indicadores numéricos para avaliar a precisão da técnica de previsão, a abordagem mais ampla é o uso de comparação visual de várias previsões para avaliar sua precisão e escolher entre os vários métodos de previsão. Nesta abordagem, é necessário traçar (usando, por exemplo, Excel), no mesmo gráfico, os valores originais de uma variável de séries temporais e os valores previstos de vários métodos de previsão diferentes, facilitando assim uma comparação visual. Você pode gostar de usar as previsões passadas por Smoothing Techniques JavaScript para obter os valores de previsão passados com base em técnicas de suavização que usam apenas um único parâmetro. Os métodos Holt e Winters usam dois e três parâmetros, respectivamente, portanto, não é uma tarefa fácil selecionar os valores ideais ótimos, ou mesmo próximos, por testes e erros para os parâmetros. O alisamento exponencial único enfatiza a perspectiva de curto alcance, ele define o nível para a última observação e baseia-se na condição de que não há nenhuma tendência. A regressão linear, que se adapta a uma linha de mínimos quadrados aos dados históricos (ou dados históricos transformados), representa o longo alcance, que está condicionado à tendência básica. Holder linear exponencial suavização capta informações sobre a tendência recente. Os parâmetros no modelo Holts são níveis-parâmetro que devem ser diminuídos quando a quantidade de variação de dados é grande e as tendências-parâmetro devem ser aumentadas se a direção da tendência recente for suportada pelos fatores causais. Previsão de curto prazo: observe que cada JavaScript nesta página fornece uma previsão de um passo a frente. Para obter uma previsão de duas etapas. Simplesmente adicione o valor previsto para o final de seus dados da série temporal e clique no mesmo botão Calcular. Você pode repetir este processo por algumas vezes para obter as previsões de curto prazo necessárias. Dados de mobilização removem variações aleatórias e mostram tendências e componentes cíclicos. Inércia na coleta de dados obtidos ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. Uma técnica freqüentemente usada na indústria é o alisamento. Esta técnica, quando corretamente aplicada, revela mais claramente a tendência subjacente, os componentes sazonais e cíclicos. Existem dois grupos distintos de métodos de suavização Métodos de média Métodos de suavização exponencial Tomar médias é a maneira mais simples de suavizar os dados Em primeiro lugar, investigaremos alguns métodos de média, como a média simples de todos os dados passados. Um gerente de um armazém quer saber o quanto um fornecedor típico entrega em unidades de 1000 dólares. Heshe toma uma amostra de 12 fornecedores, aleatoriamente, obtendo os seguintes resultados: A média calculada ou a média dos dados 10. O gerente decide usar isso como a estimativa de despesas de um fornecedor típico. Isto é uma estimativa boa ou ruim O erro quadrático médio é uma maneira de julgar o quão bom é um modelo. Calculamos o erro quadrático médio. O erro montante verdadeiro gasto menos o valor estimado. O erro ao quadrado é o erro acima, ao quadrado. O SSE é a soma dos erros quadrados. O MSE é a média dos erros quadrados. Resultados MSE, por exemplo, os resultados são: Erros de Erro e Esquadrão A estimativa 10 A questão surge: podemos usar a média para prever a renda se suspeitarmos de uma tendência. Um olhar no gráfico abaixo mostra claramente que não devemos fazer isso. A média pesa todas as observações passadas igualmente. Em resumo, afirmamos que a média ou média simples de todas as observações passadas é apenas uma estimativa útil para a previsão quando não há tendências. Se houver tendências, use diferentes estimativas que levem em consideração a tendência. A média pesa igualmente todas as observações passadas. Por exemplo, a média dos valores 3, 4, 5 é 4. Sabemos, é claro, que uma média é calculada adicionando todos os valores e dividindo a soma pelo número de valores. Outra maneira de calcular a média é adicionando cada valor dividido pelo número de valores, ou 33 43 53 1 1.3333 1.6667 4. O multiplicador 13 é chamado de peso. Em geral: barra frac suma esquerda (fração direita) x1 esquerda (fração direita) x2,. , Esquerda (fração direita) xn. Os (a esquerda (fratura direita)) são os pesos e, claro, somam para 1. Qual a diferença entre uma média móvel simples e uma média móvel exponencial. A única diferença entre esses dois tipos de média móvel é a sensibilidade cada uma Mostra as mudanças nos dados usados em seu cálculo. Mais especificamente, a média móvel exponencial (EMA) dá uma maior ponderação aos preços recentes do que a média móvel simples (SMA), enquanto a SMA atribui igual ponderação a todos os valores. As duas médias são semelhantes porque são interpretadas da mesma maneira e são comumente usadas pelos comerciantes técnicos para suavizar as flutuações de preços. O SMA é o tipo mais comum de média usado pelos analistas técnicos e é calculado dividindo a soma de um conjunto de preços pelo número total de preços encontrados na série. Por exemplo, uma média móvel de sete períodos pode ser calculada adicionando os seguintes sete preços juntos e dividindo o resultado por sete (o resultado também é conhecido como média média aritmética). Exemplo Dado a seguinte série de preços: 10, 11, 12, 16, 17, 19, 20 O cálculo SMA seria assim: 10111216171920 105 7-período SMA 1057 15 Uma vez que as EMAs colocam uma maior ponderação em dados recentes do que em dados mais antigos , Eles são mais reativos às últimas mudanças de preços do que as SMAs, o que torna os resultados das EMAs mais oportunas e explica por que o EMA é a média preferida entre muitos comerciantes. Como você pode ver no gráfico abaixo, os comerciantes com uma perspectiva de curto prazo podem não se preocupar com qual média é usada, uma vez que a diferença entre as duas médias geralmente é uma questão de meros centavos. Por outro lado, os comerciantes com uma perspectiva de longo prazo devem dar mais consideração à média que usam porque os valores podem variar em alguns dólares, o que é suficiente para uma diferença de preço para finalmente se mostrar influente nos retornos realizados - especialmente quando você é Comercializando uma grande quantidade de estoque. Tal como acontece com todos os indicadores técnicos. Não há nenhum tipo de média que um comerciante possa usar para garantir o sucesso, mas usando o teste e o erro você pode, sem dúvida, melhorar seu nível de conforto com todos os tipos de indicadores e, como resultado, aumentar suas chances de tomar decisões comerciais sábias. Para saber mais sobre as médias móveis, consulte Noções básicas de médias móveis e princípios básicos das médias móveis ponderadas.
No comments:
Post a Comment